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Dissipative heating is produced by irreversible processes, such as viscous or 
ohmic heating, in a convecting fluid; its importance depends on the ratio d/HT 
of the depth of the convecting region to the temperature scale height. Integrating 
the entropy equation for steady flow yields an upper bound to the total rate of 
dissipative heating in a convecting layer. For liquids there is a regime in which 
the ratio of dissipative heating to the convected heat flux is approximately equal 
to c(d/HT), where the constant c is independent of the Rayleigh number. This 
result is confirmed by numerical experiments using the Boussinesq approxima- 
tion, which is valid only if d/HT is small. For deep layers the dissipative heating 
rate may be much greater than the convected heat flux. If the earth’s magnetic 
field is maintained by a convectively driven dynamo, ohmic losses are limited to 
5 yo of the convected flux emerging from the core. In the earth’s mantle viscous 
heating may be important locally beneath ridges and behind island arcs. 

1. Introduction 
Some source of energy is needed to maintain the motion of a real fluid. In  

a convecting region energy is supplied externally (by heating from below) or 
internally (by radioactive heating) and carried to the outer boundary. In  it steady 
state the overall rate of working by the pressure forces must equal the rate at 
which energy is dissipated by irreversible processes. Heat generated by these 
processes contributes to the local energy balance but does not affect the net flux 
of energy that emerges. For many hid-dynamical problems, where the 
Boussinesq approximation is valid, dissipative heating is negligible compared 
with the heat flux through the region. However, this is not true for astrophysical 
convection and, as Tozer (1965) recognized, may not hold for convection in the 
earth’s mantle. 

The aim of this paper is to examine the energetics of convection in a compres- 
sible fluid. We shall in particular refer to models of convection in the earth’s 
mantle (McKenzie, Roberts & Weiss 1974, hereafter referred to as I). In addition, 
we shall try to establish a correct upper bound to the rate of ohmic heating in the 
core (assuming that convection drives the dynamo which maintains the earth’s 
magnetic field). 
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To clarify the problem, consider for the moment the simplest case, of steady 
convection in a layer of viscous fluid heated uniformly from below. Let T, and 
T, be the absolute temperatures of the upper and lower boundaries (T, > T,). Then 
conservation of energy (the first law of thermodynamics) demands that the heat 
fluxes across the upper and lower boundaries must be equal. If work is somehow 
extracted from the system we might regard it as a heat engine. Let W be the rate 
of working and Fu and & the total heat fluxes across the upper and lower 
boundaries; then W = *-Pu and the second law of thermodynamics tells us 
that W / 4  < (TI- Tu)/Z. None of these statements involves the rate of viscous 
dissipation for viscous heating contributes only to the internal energy budget. 
What then can be said about the ratio of @ to 9 , P  

More generally, @ is the rate of heating by irreversible processes (including 
both shear-stress and ohmic heating). In  $ 2  we use the entropy equation to 
set an upper bound to dissipative heating when W = 0 and show that 

@I6 (T- Tu)/T,. (1) 

Thus the dissipative heating rate may exceed the heat flux through the layer if 
B T,. A necessary, but not sufficient, condition for the Boussinesq approxima- 

tion to hold is that the layer depth d should be small compared with the tempera- 
ture scale height HT [defined in equation (23) below]. Under the conditions usually 
assumed in deriving the Boussinesq approximation it follows that 

@/$ = O(d/HT) < 1 (Malkus 1964). 

In  the next section we obtain a more stringent estimate of the shear-stress 
heating in a liquid with a small coefficient of expansion a, such that aT, < 1. 
Under certain conditions the ratio 

@/& + d/H, (2) 

and is independent of the Rayleigh number. This result confirms that the global 
effect of shear-stress heating is small when d < HT but indicates that it may be 
large if the layer is deep compared with the temperature scale height. Malkus 
(1973) considered the rate of dissipation in a Boussinesq fluid in the context of 
a more complicated problem. His approach confirms that the ratio of the global 
dissipation rat,e to the average convected flux is equal to d/H, in the Boussinesq 
limit. The numerical experiments described in I employed the Boussinesq 
approximation and shear-stress heating was ignored; for the parameters used 
there to describe the earth’s mantle the ratio d/HT M 0.12. In  $4 we compute the 
local rate of shear-stress heating for various models. This heating is concentrated 
into narrow regions, corresponding to rising and sinking plumes, and the concen- 
tration is particularly marked for convection driven by heating from within. The 
global heating rates computed for these models are proportional to the heat flux 
and independent of the Rayleigh number, as predicted by (2). The difficulty of 
extending this treatment to gases is briefly discussed in $5. 

Hydromagnetic dynamos, driven by convection, have been invoked to main- 
tain planetary and stellar magnetic fields. Here viscous dissipation is small com- 
pared with ohmic heating. In  $6  we derive expressions analogous to (1) and (2) 
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for spherical dynamos (Malkus 1973). The rate of ohmic dissipation may exceed 
the thermal flux if the temperature scale height is small; since the heat produced 
remains in the system, the dynamo cannot be regarded as a heat engine whose 
thermodynamic efficiency might limit @. It is only in the Boussinesq limit, when 
T, w T,, that (1)  resembles the upper bound on W .  

Finally, in $7, we consider some geophysical implications of these results. 
Shear-stress heating may provide local increases in the temperature of the upper 
mantle, which could explain the high heat flow behind island arcs as well as the 
variable composition of oceanic basalts erupted at ridges. Previous estimates of 
ohmic dissipation in the core (though based on faulty arguments) are not 
significantly affected. 

Relatively little work has yet been carried out on shear-stress heating in con- 
vective flows. Gebhart (1 962) and Gebhart & Mollendorf (1 969) employed 
boundary-layer expansions to show that this heating became important a t  high 
Reynolds numbers if d was comparable with HT. However, Ackroyd (1974) has 
pointed out that they used the Boussinesq form of the boundary-layer equations, 
valid only if HT 9 d ,  and that their results are considerably modified when the 
full equations are used. Apart from an erroneous paper by Rice (1971) the only 
treatment of viscous dissipation in BBnard convection is due to Turcotte et al. 
(1974). They adopted modified Boussinesq equations in which both viscous 
heating and the adiabatic gradient appeared in the heat transport equation, 
though the flow remained incompressible. Solutions were computed, a t  infinite 
Prandtl number, for d/H, < 3; however, the ratio @/P, was not calculated. 
A proper investigation of convection in a liquid when d/HT 2 1 requires a self- 
consistent anelastic model in which all the relevant non-Boussinesq effects are 
retained: in particular, the velocity is no longer solenoidal. 

2. Integral constraints 
I n  this section we obtain an upper bound for the dissipative heating rate in 

a steadily convecting fluid that is valid for any equation of state or stress-strain 
relationship. In  a Boussinesq fluid, with d < H,, this heating rate is small. We 
obtain two integral constraints by considering the energy equation only, without 
explicitly invoking the equation of motion. 

Consider a convecting fluid occupying a volume V enclosed by a surface S on 
which the normal component of the velocity u is zero and either u itself or the 
tangential stress vanishes. We suppose that the fluid is conducting, with a 
magnetic field B maintained by electric currents flowing in V .  Locally, conserva- 
tion of energy requires that the rate of change of the total energy (internal, 
kinetic, electromagnetic and potential) is equal to the net inward flux of energy 
plus the rate of internal generation of heat by chemical and nuclear reactions. 
In  the magnetohydrodynamic approximation 

46-2 



724 J .  M .  Hewitt, D. P. McKenxie and N .  0. Weiss 

(Landau & Lifshitz 1959, 1960). Here p is the density, e the internal energy, 
T the absolute temperature, k the thermal conductivity, H the volumetric 
heating rate and Y the gravitational potential, such that the gravitational 
acceleration g = VY'; P is the thermodynamic pressure and rii - PJi, the total 
stress tensor, so that rii is the contribution from irreversible processes (Batchelor 
1967). The right-hand side of (3) includes the Poynting flux E A B/po, where E is 
the electric field and po the permeability (assumed constant). 

The primary global constraint is the conservation of energy. In  a steady state 
we integrate (3) over V to obtain 

/ s k g d 8 i + s  H d V  = 0. 
V 

(4) 

(Here we have assumed that the electric current j vanishes everywhere outside V ,  
so that I. 

J s ~ ~ ~ . d ~  = 0 . 1  

The net heat flux out of the region is equal to the total rate of internal heating. 
In  particular, for steady convection in a horizontal layer, the difference between 
the fluxes across the upper and lower boundaries equals the rate a t  which heat is 
generated in the layer. It must be emphasized that dissipative heating does not 
appear in (4); irreversible processes such as shear-stress or ohmic heating do not 
contribute to the overall heat flux. 

The most general constraint involving dissipative heating may be obtained 
from (1)  by introducing the entropy s and substituting for E from Ohm's law 

j = ~ ( E + u A B ) ,  ( 5 )  

where a is the electrical conductivity. Then 

aui j 2  
p T  -+U.VS = V.(kVT)+H+rii-+- (e ) ax, 

(Landau & Lifshitz 1960). Irreversible processes, such as shear-stress or ohmic 
heating, provide positive source terms, similar to H ,  for the entropy. For a steady 
flow conservation of mass implies that 

v .  (pu) = 0. (7) 

Hence (6) may be divided by T and integrated over the volume V to yield 

Rewriting (8), we have 

We now consider Rayleigh-BBnard convection in a plane layer. Let Su, T,, 
4 and Tl be the fluxes and absolute temperatures at  the upper and lower 
boundaries. Since (6) allows both local cooling (e.g. by adiabatic expansion) and 
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local heating, the temperature is not constrained to lie between Tu and 11. Let 
T, and T, be the maximum and minimum temperatures in V ,  so that 

T, Q T Q T,, Tu b T,, Ti< T,. (10) 

Now from (4) gu = q+Q, ( 1 1 )  

where the global rate of internal heat generation 

Q = /  V H d V .  (12 )  

The surface integral in (9) becomes 

Since the second integral in (9) is positive definite we can derive the inequality 

from (11 ) .  Finally, since T < Tm, (14)  implies that the total rate of dissipative 
heating 

where AT = T,-T, 2 T-T,. (16 )  

In  a viscous fluid without a magnetic field, (15)  allows the overall rate of shear- 
stress heating CD to exceed the flux flu if > 2Tu. Of course this is only an upper 
bound. Nevertheless it is instructive to compare this result with the corresponding 
limit to the power W that could be extracted from a convectively driven heat 
engine in an inviscid fluid. The local rate of working appears in the equations as 
a negative heat source. From ( 1 1 )  

f l u = % - W > 0  (17)  

and so W < % whereas, from (15)) if Q = 0,  0 < (ATIT,) 8. To be sure, the rate 
of working must satisfy the more restrictive thermodynamic constraint on the 
efficiency of a heat engine, that 

W/& < ATIT, < 1. ( 1 8 )  

It is clear that heat generated by shear stresses, which remains in the region V ,  
is quite different from work done outside the region. 

The entropy equation ( 6 )  can alternatively be written in terms of the tempera- 
ture as 

where the adiabatic temperature gradient 
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a is the coefficient of thermal expansion and C, is the specific heat at constant 
pressure, assumed constant. Integrating (19) over V for a steady state now yields 

From (21), with (4), (12), (7) and the boundary conditions on u, 

@+ a T u . V P d V  = 0. (22) 
S V  

The global rate of dissipative heating is exactly cancelled by the work done 
against the adiabatic gradient. 

For the Boussinesq approximation to be valid fluctuations in thermodynamic 
quantities must be small and the layer depth d must be small compared with the 
temperature scale height 

HT = CJga. 

In an unpublished paper W. V. R. Malkus showed that the terms on the right-hand 
side of (1 9) are of order d/HF and can therefore be neglected in the Boussinesq 
approximation (see Malkus 1964, 1973). It follows also that T, = Ti and that 
AT < Tl when the Boussinesq approximation holds. Hence T, ;5: TI and the 
inequality (15) becomes, approximately, 

(23) 

@/FU < ATIT, < 1.  (24) 

But this condition, which resembles (18), holds only when d < H,. 

3. Shear-stress heating in a liquid 
Under certain conditions, which apply in the earth’s mantle, (22) can be 

simplified to give a more useful, if less general, result. The pressure gradient can 
be separated into two parts: 

(25) V P  = VP,+VP,, 

where the hydrostatic gradient 
and the dynamic contribution 

VP, = - pge, 

VP1= V . T - ~ [ o  A u + V ( & ~ ) ]  + j A B (27) 

from the equation of motion; here e, is a unit vector in the upward vertical 
direction, along the z axis of Cartesian co-ordinates, and o is the vorticity. We 
now investigate whether the right-hand side of (22) can be simplified by replacing 
P by Po. 

At this stage we set B = 0 and consider viscous stresses, so that 

where v is the kinematic viscosity. If the PrandtI number is high enough for 
viscous forces to dominate inertial forces in (27) then 

( T u  . VP,) vTv2/d2 vTv 
( T u  . VP,) gvAT gATd2’ 

=-=- 
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where v is a typical velocity and the angular brackets denote horizontal averages. 
I n  I we found that for Rayleigh-BBnard convection in a Boussinesq fluid with 
a Rayleigh number 

the velocity v M R%k/C,pd. Assuming that this holds when d = O(HT) and 
substituting into (29), we find that 

R = C,pgaATd3/kv (30) 

(Tu . VP,) / (Tu  . VP,) M aT/R). (31) 

Hence for fluids with a sufficiently small coefficient of expansion, and a sufficiently 
high Prandtl number for the Reynolds number to be small even at high Rayleigh 
numbers, V P ,  can be ignored in comparison with the hydrostatic pressure 
gradient and (22) simplifies to 

(32) 

whence, from (as), @=I pgaTwdV, (33) 
V 

where w = u . e,. Moreover, if g ,  a and C, are all constant (33) can be written as 

where the bracketed term is the horizontally averaged convective heat flux and 
A is the area of the layer. In  a vigorously convecting Boussinesq fluid, with a high 
Rayleigh number, nearly all the heat flux is carried by convection, except in 
narrow thermal boundary layers. Assuming that this remains true in deep layers 
we can set 

(pC, w T )  M f +  Hz, (35) 

where f is the mean flux per unit area across the base of the layer (z = 0) and H 
is assumed constant. Then (34) becomes 

@ = (gad/C,) (f+ 4Hd). 

p = Hd/ ( f+Hd)  = Hd/F 

E = @ISu + (d/HT) (1 - 4 , ~ ) .  

(36) 

If the mean heat flux per unit area across the top of the layer is F = S J A  and 

(371 

is the ratio of internally generated heat to the total heat flux then, from (36) and 
(23), the ratio 

(38) 

E is not a proper thermodynamic efficiency. Nevertheless, following Malkus 
(1973), we may regard E as the efficiency of conversion of heat into mechanical 
work within the convecting layer. 

Equation (38) implies that the importance of shear-stress heating is inde- 
pendent of the Rayleigh number. Moreover, although we introduced viscous 
stresses to justify neglecting VP,, (38) does not depend on the relation between 
rii and ui. In the Boussinesq limit, when d < HT, E < 1 and shear-stress heating 
can be neglected in the heat flow equation; (38) is consistent with Malkus’ 
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demonstration that the shear-stress heating term is o(d/HT). Indeed, (34) can 
be derived for a Boussinesq fluid by following the method used by Malkus (1973) 
in discussing a more complicated problem. When d = O(HT) ,  the Boussinesq 
approximation is no longer valid and shear-stress heating becomes important, 
together with variations in the adiabatic gradient. 

That ( 3 8 )  is compatible with ( 8 )  is easily demonstrated by substituting (26) 
into (20) and integrating to obtain the adiabatic temperature 

0 = T,exp [(d-z)/H,]. (39) 

If the convection produces only small deviations from 0 then 

Substituting (40)  into ( 1 8 )  verifies that ( 3 8 )  is a more stringent condition, which 
approaches ( 8 )  in the Boussinesq limit. 

The case of high Prandtl number p discussed above is appropriate for convec- 
tion in the earth's mantle. It is also worth considering the form taken by (23) 
when viscous stresses are dominated by Reynolds stresses and lVP,I M @/d, so 
that instead of ( 2 9 )  

There is as yet no reliable theory that predicts the velocity for high Reynolds 
number convection. We therefore consider two alternative possibilities. Suppose, 
first, that all the gravitational potential energy of a rising fluid element is con- 
verted into kinetic energy. Then 

( T u  . V P,)/(Tu . V Po) M v2T/gATd. (41) 

v2 M gaATd (42) 

and (Tu.VP,)/(Tu.VP,) x aT. ( 4 3 )  

If, on the other hand, we suppose that the heat flux is independent of v and d for 
sufficiently small values of p (Spiegel 1971 a, b )  then 

v z (pR)gk/G,pd 

and (Tu.VP,)/(Tu.VPJ M aT(pR)*. 

(44) 

(45) 

If either (43) or (45) holds it follows that VP, can be neglected only if aT < 1 .  
Most liquids with small Prandtl numbers have a 5 2 x lO-4"K-l, so this condi- 
tion is generally satisfied in laboratory experiments. The shear-stress heating 
integral @ is then given by ( 3 3 )  and the asymptotic efficiency by ( 3 8 )  if the 
relevant conditions are satisfied. 

4. Numerical experiments 
Although the global constraints obtained from conservation laws must always 

be satisfied they give no indication of the local variation of shear-stress heating 
within a convecting fluid, or of its possible influence on the temperature field. 
The numerical experiments on convection in the earth's mantle described in I 
showed narrow plumes at high Rayleigh numbers, suggesting that shear-stress 
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heating could be locally important. It is therefore necessary to investigate the 
effects of viscous heating. Some limited understanding of its importance may be 
obtained from analytic solutions (Gebhart 1962; Gebhart & Mollendorf 1969; 
McKenzie 1969; Ackroyd 1974). A proper treatment requires a fully consistent 
non-Boussinesq calculation, which we shall not attempt here. 

When dlH, < 1 the leading approximation to Q, can be consistently evaluated 
from a solution to the Boussinesq equations. Taking numerical values from 
table 1 of I we find that d/H, w 0.11 7 for convection in the upper mantle; so it is 
reasonable to regard the shear-stress heating as a perturbation to the Boussinesq 
approximation with V . u = 0. For an incompressible fluid with Newtonian 
viscosity q = pv, 

For two-dimensional flows there exists a stream function $ such that 

and (48) becomes 
u = ( - a$Iaz, 0, a@px) (47) 

(48) 

This estimate remains valid provided that d -g HT, so that u is approximately 
solenoidal. We have computed the local shear-stress heating, given by (48), for 
the various models described in I, using a straightforward difference representa- 
tion of the differential operators on a staggered mesh. 

Contours of the viscous heating rate, together with streamlines for the appro- 
priate flows, are shown in figure 1 for three different models with the parameter p 
[defined in (37)] set equal to 0 ,0 .5  and 1 and a range of values for the heat flux P. 
These results can be used to study the local variation of the shear-stress heating 
rate. The tangential stress vanishes at  the surface of the box within which the 
flow is confined. The largest values of the heating rate occur near the corners and 
are caused by the change in flow direction. In  these regions the streamlines 
resemble those in figure 2 (a),  calculated from the analytic solution for Stokes 
flow driven by boundaries moving parallel to themselves (Batchelor 1967). For 
perpendicular boundaries moving with a speed v the shear-stress heating rate 

where ( r ,  0) are polar co-ordinates centred on the corner with 0 measured down- 
wards from the horizontal (McKenzie 1969; note that the term cos 0 is incorrectly 
given as cos0, in his equation (3.17) though the correct expression was used to 
obtain his figure 7).  Contours of the shear-stress heating rate from (49) are shown 
in figure 2 ( b ) .  They are similar to those near the corners in figure 1, though the 
singularity at  r = 0 (corresponding to a discontinuous velocity on the boundary) 
is absent in the numerical solutions. 

The most striking feature of the flows in figure 1 is the development of narrow 
plumes as the heat flux is increased, particularly when the layer is heated from 
within. As these piumes become more dominant the shear-stress heating rate 
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FIGURE 2. Contours of (a )  the stream function and ( b )  the shear-stress heating rate obtained 
from (49). The boundaries move parallel to themselves to the right and downwards with 
a constant speed v = 20 mm and 7 = 6 x lozo kg m-1 s-l. Contour levels in ( b )  are 4.8 x 
1.2 x and 4.8 x lo-* Wm-3, with a singularity at the corner. 

FIGURE 1. Variation of the local shear-stress heating rate. Contours of the heating rate 
with the corresponding streamlines for convection in a Boussinesq fluid heated entirely 
from below (p = 0) ,  half from within and half from below (p = +), and entirely from within 
(y  = 1). Mean heat fluxes through the upper boundary: (a )  Wm-z, 
(c )  5.85 x 10-2 Wm+. Other parameters as in table 1 of I. Models correspond to figures 
7, 9, 18, 19 and 20 of I. The contour intervals for the local shear-stress heating rate 
4 (Wm-3) are not uniform. In each case contours are drawn at levels [0.02 (0.02) 0-10, 
0.20 (0.20) 1.001 x Cm/l.l,  where Qm is the maximum heating rate, tabulated below; 
Q > -lliQ,,, in the shaded regions. Contours of the stream function @ are equally spaced a t  
levels rl: [O.O (0.2) 1.01 x 9J1.1, where I @ [  < @m. 

Wrnp2, ( b )  

p = o  p = +  p = l  

(a) 0.077 0.068 0.058 
q4mx lo8 (b )  1-70 1.42 1.36 1 (c) 10.8 12.7 7.46 
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grows stronger in a narrow jet; the maximum rate increases in the corners and 
a local minimum appears half-way down the cell. This is particularly noticeable 
in the model heated entirely from within, in figure 1 ( b ) ;  when H is further 
increased two cells are formed and the viscous heating becomes more diffuse. I n  
the model heated from below T is fixed at z = d and aT/az at z = 0 but the hot 
and cold plumes are nearly identical. The maximum local shear-stress heating 
rate occurs in figure 1 (c), when half the heat is generated within the box. 

These results may also be used to compute the global dissipation rate 0 for 
comparison with the theoretical prediction of the ratio 

E = 0 . 1 1 7 ( 1 - Q , ~ )  (50) 

from (38). Figure 3 shows the agreement between the numerical results and the 
theoretical expression, which is independent of the Rayleigh number. For the 
models in figure 1 ( a )  the thickness of the conducting boundary layers is not yet 
small compared with the depth of the layer; hence the convected flux is less 
than F and E is slightly less than the value in (50). Apart from these small 
differences E varies little while R increases by a factor of 50. 

Since the shear-stress heating is concentrated in the cold descending plumes 
which dominate the motion it might be supposed that viscous heating could alter 
the convection patterns in figure 1. To check this possibility we have carried out 
numerical experiments with a Boussinesq fluid containing an additional variable 
source of heat, set equal to the local viscous dissipation rate. No perceptible 
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changes were found in the streamlines or isotherms. We consider that the two- 
dimensional calculations in I would be virtually unaffected by including shear- 
stress heating and other non-Boussinesq effects with d/HT M 0.1. More generally, 
the gross properties of a convecting layer (Nusselt number, (w), (T)) should 
similarly be unaffected, though specific details of a realistic problem (such as the 
planform or time-dependent behaviour) would be sensitive to small changes in 
the model. 

5. Shear-stress heating in a gas 
Gases differ from liquids in having a coefficient of thermal expansion that is 

both large and temperature dependent. For a perfect gas a = T-l, and the same 
expression approximates very closely to the behaviour of real gases under most 
laboratory conditions. Since aT = 1 the perturbed pressure gradient VP, cannot 
be neglected; (22) gives 

@ = - su .VPdV = g s s  pwdV- u.VP,dV. (51) 

As there is no net mass flux across any surface the first integral on the right side 
of (51) vanishes and so 

@ = -su.VP,dV; (52)  

i.e. the rate of shear-stress heating equals the rate of work done by the perturbed 
pressure forces. Thus the global dissipation rate for a gas, unlike that for a liquid, 
cannot be calculated from an expression similar to (38). 

It is still possible to estimate @ from (52). For high Reynolds number convec- 
tion the convective velocity may be estimated from (42) and IVP,J zpv2/d 
from (27). Hence 

E M pv3/CppvAT M d/HT (53) 

once again. In  the Boussinesq approximation the shear-stress heating rate 
remains negligible (Spiegel & Veronis 1960) but it becomes significant when 
d M HT. This is still consistent with the results obtained in $2. 

How far shear-stress heating affects convection in planetary and stellar 
atmospheres remains unclear. Models of stellar convective zones are generally 
computed using mixing-length theory (Spiegel 1971b, 1972) and it is generally 
assumed that the mixing length is comparable with the pressure scale height Hp. 
In  that case (53) still holds, with d replaced by Hp. For a polytrope of index m 
the ratio HJH, = I / ( m +  1) so E M for m = Q .  Thus shear-stress heating is 
significant but may not dominate the local structure of convection. If, as in the 
sun, convection extends over many scale heights,the total amount of shear-stress 
heating can be much greater than the convective flux despite the fact that E < 1 
for each individual eddy. 

The role of shear-stress heating in a gas must be determined by numerical 
experiments. Since compressible convection depends critically on the form of the 
equation of state it is not possible to extrapolate from results for a liquid. An 
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estimate of the effects of viscous heating can be obtained from Graham's (1975) 
compressible two-dimensional calculations or from computations using the 
anelastic approximation. 

6. Ohmic heating 
Consider a convectively driven hydromagnetic dynamo occupying a spherical 

region of radius a. We suppose that shear-stress heating is dominated by ohmic 
effects. (In the earth's core the magnetic Prandtl number poav M 0.01 (Gubbins 
1974).) Then for a liquid, under suitable conditions, we have from (15) and (32) 

AT CD =I j-"dV = - aTu.VPodV c -FoA, 
V V  S V  TO 

(54) 

where Fo is the average flux across the surface of radius a, which is held a t  a fixed 
temperature To, and A = 47ra2. From (54) 

@ = pgaTwdV = 47ra2pga(wT)dr = (55)  
S V  S O a  

where w is the radial velocity, F ( r )  is the convective flux at a radius r and angular 
brackets now denote averages over spherical surfaces. This corresponds to the 
result obtained by Malkus (1973) for a Boussinesq fluid. 

To proceed further we assume that the Boussinesq approximation holds in 7, 
so that g(r)  = (r/a)go, where go is the surface value of the gravitational accelera- 
tion, and that heat is generated uniformly within the sphere and removed by 
vigorous convection, so that F ( r )  = ( ~ / U ) ~ F ~ A .  Then (55 )  becomes 

CD = ( ~ ) F o A S o u ( ~ ) 4 d r = ~ ( ~ ) F o A .  

Now the adiabatic temperature difference across the sphere is given by 

from (20), since T does not vary significantly. Hence 

Alternatively, if all the heat is generated by a point source at the centre (as in 
a Cowling-model star) S ( r )  = FoA and ( 5 8 )  is replaced by 

Equations (58) and (59) are consistent with the expression obtained by Malkus 
(1973). 

Hence we see that, a t  least in the Boussinesq limit, the efficiency is given by 
an expression similar to (38). If a 2 HT we need to know the dependence of g on r 
to obtain an exact expression for CD. However, it  is clear that, so long as (55) is 
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valid, the ratio E = O(u/HT). For a spherical region whose radius is greater than 
the temperature scale height the global ohmic heating rate may exceed the heat 
flux emerging from its surface. Since the ohmic heat is fed back into the internal 
energy of the liquid, without escaping from the system, the dynamo is not a heat 
engine doing work and there is no violation of the second law of thermodynamics. 
In  the limit AT,, x AT < To the efficiency E approaches the thermodynamic 
value for a reversible heat engine operating with a temperature difference AT. 

7. Geophysical implications 
The discussion of ohmic heating can be applied to the earth’s core. The question 

of whether the core is superadiabatically stratified has become controversial 
(Higgins &Kennedy 1971; Kennedy & Higgins 1972; Jacobs 1973; Malkus 1973). 
If convection occurs, the superadiabatic gradient will be small, so that AT x AT,,; 
the best available estimates give a range from 3750 to 4250 OK across the outer 
core (Gubbins 1974). The Boussinesq approximation is valid and ATIT M $. 
Hence the ratio of ohmic dissipation to convective flux E M & if the convective 
flux increases as r3 (corresponding to uniform heat generation). If the convective 
flux is uniform (as it might be if heat is liberated by accretion onto the inner 
core) E M +. 

Conduction down the adiabatic gradient in the core contributes about 3 yo of 
the total heat flux through the surface of the earth. If we assume that the con- 
vected heat flux is less than 10% of the flux a t  the earth’s surface, then the total 
ohmic dissipation is less than about 1 %, corresponding to a rate of 3 x 10l1W 
(Malkus 1973). To estimate the corresponding field B in the core we suppose that 
the rate of ohmic heating is given by B2a/,utcr; taking c = 5 x 105mhom-l 
(Gubbins 1974), we find that B x 2000G. This upper limit is comfortably in 
excess of any fields that have been suggested in the core. 

I n  previous discussions of ohmic heating in the core, e.g. by Bullard (1949), 
Bullard & Gellman (1954), Hide (1956) and Braginskii (1964), it  has been sup- 
posed that the global dissipation rate cannot exceed the total heat flux emerging 
from the core and that the efficiency E is limited by the efficiency of a reversible 
heat engine. We have shown that the ohmic heating rate may be greater than the 
emergent flux if a > H, and emphasized that a dynamo is not a heat engine in 
the thermodynamic sense. Nevertheless, since the Boussinesq approximation is 
valid for the core, E x AT/T and earlier results, though based on faulty 
arguments, are quantitatively correct. 

In  applying the results of $$3 and 4 to the earth’s mantle we assume that con- 
vection is confined to the upper mantle (see the discussion in I and McKenzie & 
Weiss 1975) and also that a temperature scale height of 6000km, obtained from 
values of a, C, and g given in I ,  is correct. The principal uncertainty is in the 
value of a, owing to phase changes in the mantle. If the mantle material is every- 
where an equilibrium assemblage then the equation of state has the form 
p = p(P,  T) regardless of whether or not phase changes are taking place. Taking 
account of the olivine-spinel phase change we then obtain a value a M 4 x 10-4 
OK-l in the upper mantle, whence it follows that H, x d. Consequently, realistic 
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calculations should include all the non-Boussinesq effects. However, it is as yet 
uncertain whether the sinking slabs beneath island arcs do indeed contain an 
equilibrium assemblage, as Griggs (1972) has suggested, or a metastable one. If 
metastable phases are present the phase changes may have little influence on 
the energetics, and the Boussinesq approximation may be sufficient. 

Much of the interest in shear-stress heating in the mantle arose because it 
offered a possible explanation for the high heat flow observed behind island arcs, 
particularly those of the Western Pacific (Vacquier et al. 1966). Though it now 
seems likely that the basins in which the observations were made have been 
produced by inter-arc spreading, as Karig (1971) suggested, the lithosphere in 
most of these regions is probably too old to be able to maintain the observed heat 
flux by continuing to cool. The problem of the origin of this heat still remains; 
various attempts (Oxburgh & Turcotte 1968; McKenzie 1969; Sugimura & 
Uyeda 1973) have been made to explain it by shear-stress heating, though none 
of these calculations has been concerned with the full convection problem. 
Although the results in figure 1 should not be used without taking the adiabatic 
gradient into account, they do suggest that there may be local maxima in the 
surface heat flux above the sinking plumes. 

Another feature of interest in the models in figure 1 is the region where the 
rising sheet spreads out near the upper surface. The magnitude of the shear-stress 
heating scales as the square of the velocity as in (49) and the thermal structure 
will therefore be sensitive to changes in the spreading rate. Recent work on the 
detailed chemistry of oceanic basalts has suggested that their composition (which 
depends on temperature) is related to the spreading rate of the ridge that erupted 
them (Nisbet & Pearce 1973). These variations might be produced by local 
heating caused by shear stresses. Otherwise it is difficult to explain them, for the 
thermal structure beneath a ridge is determined by the local temperature of the 
mantle beneath its axis, while the spreading rate depends on forces acting over 
the entire surfaces of both plates. 

These geophysical problems indicate the need for a consistent non-Boussinesq 
calculation. The anelastic approximation for a liquid is simplified, compared with 
that for a gas, if aT < 1. A study of convection in a layer with d 2 HT requires 
numerical experiments in which the hydrostatic variation of density, the 
adiabatic temperature gradient and the shear-stress heating are retained. Such 
a computation could confirm the results obtained here. 
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